Probabilistic rough set approximations
نویسنده
چکیده
Probabilistic approaches have been applied to the theory of rough set in several forms, including decision-theoretic analysis, variable precision analysis, and information-theoretic analysis. Based on rough membership functions and rough inclusion functions, we revisit probabilistic rough set approximation operators and present a critical review of existing studies. Intuitively, they are defined based on a pair of thresholds representing the desired levels of precision. Formally, the Bayesian decision-theoretic analysis is adopted to provide a systematic method for determining the precision parameters by using more familiar notions of costs and risks. Results from existing studies are reviewed, synthesized and critically analyzed, and new results on the decision-theoretic rough set model are reported.
منابع مشابه
Multi-granulation fuzzy probabilistic rough sets and their corresponding three-way decisions over two universes
This article introduces a general framework of multi-granulation fuzzy probabilistic roughsets (MG-FPRSs) models in multi-granulation fuzzy probabilistic approximation space over twouniverses. Four types of MG-FPRSs are established, by the four different conditional probabilitiesof fuzzy event. For different constraints on parameters, we obtain four kinds of each type MG-FPRSs...
متن کاملIncremental updating approximations in probabilistic rough sets under the variation of attributes
The attribute set in an information system evolves in time when new information arrives. Both lower and upper approximations of a concept will change dynamically when attributes vary. Inspired by the former incremental algorithm in Pawlak rough sets, this paper focuses on new strategies of dynamically updating approximations in probabilistic rough sets and investigates four propositions of upda...
متن کاملProbabilistic rough sets: Approximations, decision-makings, and applications
The main objective of this special issue is to present readers with the significantly extended and improved versions of the articles presented at the International Conference on Rough Sets, Fuzzy Sets, and Granular Computing (RSFDGrC’05) held in Regina, Canada in September 2005. In the standard rough set model, the lower and upper approximations are defined based on the two extreme cases (full ...
متن کاملMining Incomplete Data with Many Missing Attribute Values A Comparison of Probabilistic and Rough Set Approaches
In this paper, we study probabilistic and rough set approaches to missing attribute values. Probabilistic approaches are based on imputation, a missing attribute value is replaced either by the most probable known attribute value or by the most probable attribute value restricted to a concept. In this paper, in a rough set approach to missing attribute values we consider two interpretations of ...
متن کاملProbabilistic approaches to rough sets
This paper reviews probabilistic approaches to rough sets in granulation, approximation, and rule induction. The Shannon entropy function is used to quantitatively characterize partitions of a universe. Both algebraic and probabilistic rough set approximations are studied. The probabilistic approximations are defined in a decision-theoretic framework. The problem of rule induction, a major appl...
متن کاملDecision-Theoretic Rough Set Models
Decision-theoretic rough set models are a probabilistic extension of the algebraic rough set model. The required parameters for defining probabilistic lower and upper approximations are calculated based on more familiar notions of costs (risks) through the well-known Bayesian decision procedure. We review and revisit the decision-theoretic models and present new results. It is shown that we nee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Approx. Reasoning
دوره 49 شماره
صفحات -
تاریخ انتشار 2008